Intraflagellar transport/Hedgehog-related signaling components couple sensory cilium morphology and serotonin biosynthesis in Caenorhabditis elegans.
نویسندگان
چکیده
Intraflagellar transport in cilia has been proposed as a crucial mediator of Hedgehog signal transduction during embryonic pattern formation in both vertebrates and invertebrates. Here, we show that the Hh receptor Patched-related factor DAF-6 and intraflagellar transport modulate serotonin production in Caenorhabditis elegans animals, by remodeling the architecture of dendritic cilia of a pair of ADF serotonergic chemosensory neurons. Wild-type animals under aversive environment drastically reduce DAF-6 expression in glia-like cells surrounding the cilia of chemosensory neurons, resulting in cilium structural remodeling and upregulation of the serotonin-biosynthesis enzyme tryptophan hydroxylase tph-1 in the ADF neurons. These cellular and molecular modifications are reversed when the environment improves. Mutants of daf-6 or intraflagellar transport constitutively upregulate tph-1 expression. Epistasis analyses indicate that DAF-6/intraflagellar transport and the OCR-2/OSM-9 TRPV channel act in concert, regulating two layers of activation of tph-1 in the ADF neurons. The TRPV signaling turns on tph-1 expression under favorable and aversive conditions, whereas inactivation of DAF-6 by stress results in further upregulation of tph-1 independently of OCR-2/OSM-9 activity. Behavioral analyses suggest that serotonin facilitates larval animals resuming development when the environment improves. Our study revealed the cilium structure of serotonergic neurons as a trigger of regulated serotonin production, and demonstrated that a Hedgehog-related signaling component is dynamically regulated by environment and underscores neuroplasticity of serotonergic neurons in C. elegans under stress and stress recovery.
منابع مشابه
Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans
The small ciliary G protein Arl13b is required for cilium biogenesis and sonic hedgehog signaling and is mutated in patients with Joubert syndrome (JS). In this study, using Caenorhabditis elegans and mammalian cell culture systems, we investigated the poorly understood ciliary and molecular basis of Arl13b function. First, we show that Arl13b/ARL-13 localization is frequently restricted to a p...
متن کاملDauer pheromone and G-protein signaling modulate the coordination of intraflagellar transport kinesin
Introduction Cilia are cellular protrusions that are present on almost all postmitotic vertebrate cells. Cilia have important motility or sensory functions and are required for the organization of several signal transduction pathways. Structurally, cilia are dynamic. Ciliogenesis, cilium length and morphology and the organization of signaling pathways in cilia are regulated (Mukhopadhyay et al....
متن کاملThe conserved proteins CHE-12 and DYF-11 are required for sensory cilium function in Caenorhabditis elegans.
Sensory neuron cilia are evolutionarily conserved dendritic appendages that convert environmental stimuli into neuronal activity. Although several cilia components are known, the functions of many remain uncharacterized. Furthermore, the basis of morphological and functional differences between cilia remains largely unexplored. To understand the molecular basis of cilia morphogenesis and functi...
متن کاملIntraflagellar transport motors in Caenorhabditis elegans neurons.
IFT (intraflagellar transport) assembles and maintains sensory cilia on the dendritic endings of chemosensory neurons within the nematode Caenorhabditis elegans. During IFT, macromolecular protein complexes called IFT particles (which carry ciliary precursors) are moved from the base of the sensory cilium to its distal tip by anterograde IFT motors (kinesin-II and Osm-3 kinesin) and back to the...
متن کاملSensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles.
Sensory cilium biogenesis within Caenorhabditis elegans neurons depends on the kinesin-2-dependent intraflagellar transport (IFT) of ciliary precursors associated with IFT particles to the axoneme tip. Here we analyzed the molecular organization of the IFT machinery by comparing the in vivo transport and phenotypic profiles of multiple proteins involved in IFT and ciliogenesis. Based on their m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 13 شماره
صفحات -
تاریخ انتشار 2009